Carbon-free Hydrogen and Electricity from Coal: Options for Syngas Cooling in Systems Using a Hydrogen Separation Membrane Reactor

Luca De Lorenzo[†], Tom Kreutz, Bob Williams

Princeton University

Paolo Chiesa

Politecnico di Milano

Third Annual Conference on Carbon Sequestration May 3-6, 2004, Alexandria, VA

†presenter

Outline

- 1. Schematic overview of the process and connection with previous works
- 2. Motivations and synergies of Membrane Reactor and Syngas Coolers
 - "Dry" syngas → Syngas coolers → Increase efficiency
 - 2 free parameters: Hydrogen Recovery Factor (HRF)
 Steam to Carbon ratio (S/C)
- 3. Construction of the "HRF-S/C space"
- 4. Movements in this space to obtain different plant configurations (low S/C)
- 5. Determine final plant configurations
- 6. Present thermodynamic and economic performances

Coal-to-hydrogen: Schematic process

Coal-to-hydrogen plants: past works

H₂ Separation

Syngas Cooling		Pressure Swing Adsorbtion	Membrane Reactor			
	Quench	Lowest Cost	Relatively small increase in efficiency			
	Syngas Coolers	Slight increase in efficiency Not cost effective	5			

Same models and assumptions for coherent comparison

Motivations

$$H_2O + CO \leftrightarrow CO_2 + H_2$$
 Water-gas-shift

CONVENTIONAL:

"WET" syngas required for high H₂ production

PUSH the reaction

Quench Cooling good match to WGS but relatively inefficient

IDEA:

Relative "DRY" syngas allowed by continuous H₂ permeation

PULL the reaction

Syngas Coolers adoption and potential for improved energy efficiency

General plant scheme

 \rightarrow Un-cooled turbine 850°C

→ Steam blade cooled turbine 1250°C

Constructing (Hydrogen Recovery Factor)-(Steam to Carbon) space

Constructing (Hydrogen Recovery Factor)-(Steam to Carbon) space

Constructing (Hydrogen Recovery Factor)-(Steam to Carbon) space

Syngas Coolers & Membrane Reactor Synergies

Higher H₂ permeation flux at lower S/C

• Lower water content (S/C) in the Membrane Reactor increases the hydrogen mole fraction and its partial pressure. Increase in membrane performance (25% with respect to initial quench case)

Results: Plant configurations thermodynamic performance

Syngas Cooling Type	Quench	Syngas Coolers	
H2 Separation	Membrane	Membrane	
Turbine Type	Un-Cooled	Un-Cooled	
Steam-to-Carbon	2.38	1	
Hydrogen Production (MWth)	1091	1088	
Net Power Production (MW)	-11.5	-4.2	
Effective Efficiency* (LHV)	59.6%	60%	
CO ₂ Removal Efficiency	100%	100%	

Efficiency increase is NOT as expected...

^{*} Effective system efficiency = LHV H_2 output / LHV (coal input – coal saved**)

^{**} Coal saved based on IGCC with CO2 capture, 36.8% LHV efficiency

This is why...

Results: Plant configurations thermodynamic performance

Syngas Cooling Type	Quench	Syngas Coolers	Syngas Coolers	Syngas Coolers
H2 Separation	Membrane	Membrane	Membrane	PSA
Turbine Type	Un-Cooled	Un-Cooled	Cooled	Cooled
Steam-to-Carbon	2.38	1	0.73	1.52
Hydrogen Production (MWth)	1091	1088	1091	1032
Net Power Production (MW)	-11.5	-4.2	33.4	70.9
Effective Efficiency* (LHV)	59.6%	60%	63.8%	61%
CO ₂ Removal Efficiency	100%	100%	100%	100%

Syngas Coolers-Membrane reactor-Cooled turbine winning configuration

Results: Plant configurations economic performance

Syngas Cooling Type	Quench	Syngas Coolers	Syngas Coolers	Syngas Coolers
H2 Separation	Membrane	Membrane	Membrane	PSA
Turbine Type	Un-Cooled	Un-Cooled	Cooled	Cooled
Capital* (15% of TCR)	0.59	0.74	0.74	0.76
Carbon Disposal* (at 5\$/mt CO ₂)	0.089	0.091	0.091	0.13**
CO ₂ Removal Efficiency	100%	100%	100%	90.5%
Hydrogen Cost (\$/kg)	1.07	1.25	1.18	1.19

^{*} H_2 Cost Components (\$/kg H_2)

^{**} CO₂ emission (at 100 \$/mt C)

Conclusions

- Membrane reactor characteristic of "pulling" the water gas shift reaction allows the employment of syngas coolers; it is therefore possible to explore low S/C configurations with increased efficiency.
- Membrane performance increases for low water content $(S/C\sim1)$.
- Un-cooled turbine performance is NOT influenced by S/C variations.
- Cooled turbine is well matched with low water content without requiring low values of HRF. Syngas coolers-Membrane reactor-Cooled turbine configuration has the best thermodynamic performance.
- The economics show that these solutions are slightly not competitive. The increase in performance does not offset the higher capital cost. Key issues: syngas coolers cost & membrane permeability performance.
 - Two stage high pressure gasification
 - Fired tube heat exchanger (cheaper)